Some Problems Relevant to Math 2E Midterm (Spring 2016)

Midterm is on Monday May 9th

As always - quizzes and homeworks are your best study materials!
These questions are mainly to test yourself.

1. (a) Let D be the triangle bounded by the lines $x=1, y=2$ and $2 x+y=2$. Give the two expressions for the double integral $\iint_{D} e^{x-y} d A$ as an iterated integral. (In other words, the expressions using the two orders of integration).
(b) Compute the above double integral (by any method).
2. (a) Let D be the region bounded above by the parabola $y=2 x-x^{2}$ and below by the line $y=0$. Give the two expressions for the double integral $\iint_{D} x y d A$ as an iterated integral.
(b) Evaluate the integral (by any method).
3. (a) Calculate $\int_{0}^{1} \int_{x^{2 / 3}}^{1} x \cos \left(y^{4}\right) d y d x$. Hint: Change the order of integration.
(b) Calculate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right)^{2016} d x d y$.
4. Find the area enclosed by the curve $x^{2}+x y+y^{2}=1$.

Hint: Use the substitution $x=u+v \sqrt{3}, y=u-v \sqrt{3}$.
5. Evaluate $\int_{z=1}^{2} \int_{y=0}^{z} \int_{x=y}^{z} x y z d x d y d z$.
6. Evalaute $\int_{C} x y d x+\ln (x) d y$ where C is the curve $x=e^{t}, y=e^{-t}$ from $0 \leq t \leq 1$.
7. If f is a continuous function defined on $[0,1]$, show that

$$
\int_{x=0}^{1} \int_{y=x^{2}}^{x} x f(y) d y d x=\frac{1}{2} \int_{y=0}^{1}\left(y-y^{2}\right) f(y) d y .
$$

Hint: First change the order of integration.
8. Write the expression that would compute $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ where $\mathbf{F}(x, y)=<x^{2} y^{5}, \frac{5}{3} x^{3} y^{4}>$ and C is the path $x=\sin (t), y=1+\sin (2 t)$ from $-\pi / 2 \leq t \leq \pi / 2$.
(Don't compute it - the computation is more of a Chapter 16.3 thing).
9. (a) First, express the integral

$$
\int_{x=1}^{2} \int_{y=\frac{x}{2}}^{x} \frac{x}{y^{2}} \sin \left(\frac{\pi x}{y}\right) d y d x
$$

as an integral in new variables u, v related to x, y by the equations $x=u, y=u / v$. (Take for granted that the above equations is an appropriate change of coordinates, i.e. it is a 1 to 1 mapping on its domain).
(b) Evaluate the integral in (a) by any method.
10. See Section 16.1 Problems 11-14 and 29-32. Try to sketch some of the vector fields, and then match them afterwards. This is because on the exam, if this topic is covered, you will probably have to sketch a vector field instead of just match them.
11. (Stewart 15.8.26 Tweaked) Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$ where E lies above the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$, and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
In fact, all the problems in 15.8.21-27, 41-43 are good exercises on Spherical coordinates.
12. (Stweart 15.7.20) Evaluate $\iiint_{E}(x-y) d V$ where E is the solid between the cylinders $x^{2}+y^{2}=$ $1, x^{2}+y^{2}=16$, above the $x y$-plane, and below the plane $z=y+4$.
In fact, all the problems 15.7.17-25, 29-30 are good examples on Cylindrical coordinates.
13. (a) Find the length of the curve from $0 \leq t \leq 10$,

$$
\mathbf{r}(t)=<\cos (t)+t \sin (t), \sin (t)-t \cos (t)\rangle
$$

(b) Let the curve C be the above parameterization from $0 \leq t \leq 10$. Compute $\int_{C} x d s$.
14. (a) Compute $\int_{C}\left(x^{2} y+\sin x\right) d y$ where C is the line from $(1,0)$ to $(0,0)$ followed by the arc of the parabola $y=x^{2}$ from $(0,0)$ to $\left(\pi, \pi^{2}\right)$.
(b) Compute the same integral, but if C is the line from $(0,1)$ to $(0,0)$ along with the arc of the parabola $y=x^{2}$ from $(0,0)$ to $\left(\pi, \pi^{2}\right)$.
(c) Compute the same integral, but C is the (backwards) line $y=x$ from (1,1) to (0,0) along with the arc of the parabola $y=x^{2}$ from $(0,0)$ to $\left(\pi, \pi^{2}\right)$.
15. \#14 is $\sim 16.2 .5$. For other line integral problems, see 16.2.1-16, 19-22 (and the homework).
16. Let $A(q)$ be the area of the region $R_{q}:=\{(x, y)$ such that $x \geq 0, y \geq 0$, and $\sqrt{x}+\sqrt{y} \leq q\}$. * This one may seem a bit weird. It is a neat problem, but it's very unlike your homework *

* At least do part (d), but you should attempt parts (a)-(c).*
(a) Consider the transformation $x=p u, y=p v$ where p is a number/constant. Find the number p, which depends on q, that takes the region S in the $u v$-plane defined by
$S:=\{(u, v)$ such that $u \geq 0, v \geq 0$ and $\sqrt{u}+\sqrt{v} \leq 1\}$ to the given region R_{q} in the $x y$-plane.
(b) Use the transformation in (a) to write $A(q)$ as a double integral over the region S. i.e. since

$$
A(q):=\iint_{R_{q}} 1 \cdot d x d y=\iint_{S} 1 \cdot J d u d v
$$

find the integral on the right hand side.
(c) Using (b), what happens to $A(q)$ when q is doubled?
(d) Use the change of variables $x=r^{2}, y=s^{2}$ to find $A(q)$.
$\begin{cases}\text { Spherical Coordinates } & \vdots \text { Cylidrical Coodrinates } \\ x=\rho \sin \phi \cos \theta, \quad \rho=\sqrt{x^{2}+y^{2}+z^{2}} & \vdots x=r \cos \theta, \quad r=\sqrt{x^{2}+y^{2}} . \\ y=\rho \sin \phi \sin \theta, \quad \theta=\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right), \text { or } \tan ^{-1}\left(\frac{y}{x}\right) & \vdots y=r \sin \theta, \quad \theta=\cos ^{-1}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right), \text { or } \tan ^{-1}\left(\frac{y}{x}\right) \\ z=\rho \cos \phi, \quad \phi=\cos ^{-1}\left(\frac{z}{\rho}\right), \text { or } \tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) & \vdots z=z \\ d V=\rho^{2} \sin \phi d \rho d \theta d \phi, \text { The Jacobian } J=\rho^{2} \sin \phi & \vdots d V=r d z d r d \theta, \text { The Jacobian } J=r\end{cases}$
** Be careful when using the Inverse Trigs, that they make physical sense! **

